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Fluctuating filaments: Statistical mechanics of helices

S. Panyukot and Y. Rabith
Department of Physics, Bar-llan University, Ramat-Gan 52900, Israel
(Received 19 May 2000

We examine the effects of thermal fluctuations on thin elastic filaments with noncircular cross section and
arbitrary spontaneous curvature and torsion. Analytical expressions for orientational correlation functions and
for the persistence length of helices are derived, and it is found that this length varies nonmonotonically with
the strength of thermal fluctuations. In the weak fluctuation regime, the local helical structure is preserved and
the statistical properties are dominated by long-wavelength bending and torsion modes. As the amplitude of
fluctuations is increased, the helix “melts” and all memory of intrinsic helical structure is lost. Spontaneous
twist of the cross section leads to resonant dependence of the persistence length on the twist rate.

PACS numbds): 87.15.Aa, 87.15.Ya, 05.40a

[. INTRODUCTION arbitrary spontaneous curvature and tvWt]. In this paper
we present a detailed exposition of the theory and of its
Modern polymer physics is based on the notion that whilegpplication to helical filaments. In Sec. Il we introduce the
real polymers can be arbitrarily complicated objects, theiidescription of the spatial configuration of the filament in
universal features are captured by a minimal model in whic€rms of a triad of unit vectors oriented along the principal
polymers are described as continuous random walks. Whil es of the filament, and show that all the information about

this approach has been enormously successful and led to n us conﬂgurapon can _be obtained fr_om the knowledge qf a
merous triumphs such as the understanding of rubber elasticet of generalized torsions. The elastic energy cost associated

ity [1], the solution of the excluded volume problem and the""ith any_instantaneous coqfiguration of the f"ame”t’ s ex
pressed in terms of the deviations of the generalized torsions

theory of semidilute polymer solutiong], it is ill suited for hat d ibe thi f. on. f hei |
the description of nonuniversal features of polymers thafhat describe this configuration, from their spontaneous val-
es in some given stress-free reference state. We use this

may depend on their chemical structure in a way that canndt S . .
be captured by a simple redefinition of the effective mono-EN€r9Y to construct the statistical weights of the different

mer size or its second virial coefficient. For relatively Simp|e_cor(ljf|gura_1tlonsbarr11d shothhat t_he deVIé:ltIOI’IS (.)f the %eneral-
synthetic polymers, such “local details” can be treated byZ€ torsions behave as Gaussian random noises, whose am-

polymer chemistry-type modelg.g., rotational isomer state plitudes are inversely. proport_io.nal to the_bare p_ersistenpe
model [3]). However, chemically detailed approaches be_lengths that characterize the rigidity associated with the dif-

come prohibitively difficult(at least as far as analytical mod- ferent_ deformation rnodgs. We then Qerlve thg differential
eling is concernedin the case of complex biomolecules such equations for the orientational correlation functions that can
e expressed as averages of a rotation matrix that generates

as DNA, proteins, and their assemblies and a new type ol% . f the triad | h
minimal model is needed to model recent mechanical experia € "otation of the triad vectors as one moves along the con-

ments on such systerié—12]. Such an alternative approach _tour of the filament. An expression.for thg persistence length
is to model polymers in the way one usually thinks of them,” terms of one of the cqrrelators IS de(lved. In Sec. Il we
i.e., as continuous elastic strings or filaments that can bgpply the gengral formalism to helical fllament§ and derive
arbitrarily deformed and twisted. However, while the theory€Xact expressions for the correlat¢see Appendix Aand

of elasticity of such objects is well developgt], little is for the effective persistence length of an untwisted helix. We

known about the statistical mechanics of fluctuating fiIa—Sho.Wfth":lt _the pferh3|stenc$ I((ejngth f'sr’]'n gelnftlaral, a_noan?/no—
ments with arbitrary natural shapes. The main difficulty jstonic function of the amplitudes of thermal fluctuations. We

mathematical in origin: the description of three-dimensional!S® S,hOW that in the weak fluctuation regime, our exact ex-
filaments with noncircular cross section and nonvanishing{JreSSIonS for the correl_at_ors can be de_“"ed _f“”_“ a S'mp“f'ed
spontaneous curvature and twid#], involves rather com- ong-wavelength description of the helix, which is equivalent

plicated differential geometry15] and most DNA-related to the incompressible rodlike chain modéB], and that the

theoretical studies of such models assumed circular crod&ictuation spectrum is dominated by the Goldstone modes

sections and focused on fluctuations around the straight roﬂf this rodlike chain. Analytical expressions for the persis-

configuration16—20. tence length of a spontaneously twisted helix are deriged

Recently, we reported a study of the effect of thermalAppendix B and it is found that this length exhibits reso-

fluctuations on the statistical properties of filaments with"antiike dependence on the rate of twist. Finally, in Sec. IV
we discuss our results and outline directions for future re-

search.
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physical curve parametrized by a contour lengtli0<s
<L wherelL is the length of the filamehtTo each poins
one attaches a triad of unit vectditfs)} whose component
t5 is the tangent vector to the curvesaand the vectors; (s)
andt,(s) are directed along the two axes of symmetry of the
cross section. The vectof$(s)}, together with the inexten-
sibility condition dx/ds=t3, give a complete description of
the space curve(s), as well as of the rotation of the cross
section(i.e., twish about this curve.

The rotation of all the vectors of the triad as one moves
from points to points’ along the line, is generated by the
rotation matrixR(s,s’)

ti(s)= E Rij(s,s)tj(s"). (1) FIG. 1. Schematic drawing of a twisted ribbonlike filament. The
] vectors of the physicalt{,t;) and the Frenetln) triad can be
brought into coincidence through rotation by angle about the

The rotation matrix has the property common tangenttg).

dt, dt,
R(s,s')=R(s,s")R(s",s'), ) gs _ @alaTwsly, o= T oilgtesty,
wheres” is an arbitrary point on the contour of the filament. %: t— ot ®)
It satisfies the equation ds @127 @2l
, Note that in the original Frenet description of space curves in
JRjj(s,s ):_2 0 (S)Ryi(s,8") (3  terms of a unit tangentwhich coincides witht;), normal
s o ik KIT== (n), and binormal ), one considers mathematical lines for
which it would be meaningless to define twist about the cen-
h terline [22]. The Frenet equations contain only two param-
where eters, the curvature and torsionr:
db dn dtz
QiJZEK Eijk O - (4) qs- ™ d—s——Kt3+ 7D, gs K (7)

The two frames are related through rotation by an angle

eijx is the antisymmetric tensor add,} will be referred to ~ about the common tangent directitsee Fig. 1,
as generalized torsions, for lack of a better term. The above
equations are supplemented by the “initial” condition

Rij(s,5)=4jj, where & is the Kronecker delta function. g pstituting this relation into Eqé6) and using Eqs(7), we
The formal solution of Eq(3) is given by the ordered expo- g|ate the generalized torsiofie,} to the curvaturex, tor-

nential sion 7, and twist angle,

ty;=bcosa+nsina, t,=-—bsina+ncosa. (8)

S w1=KCOSa, wr=kSiNa, wz=7+dal/ds. (9
R(s,s’)zTSex;:(—f ds’Q(s")
s/

The theory of elasticity of thin rodgl3] is based on the
notion that there exists a stress-free reference configuration
. defined by the set of spontaned(istrinsic) torsions{wgy}-

As=0 The set{wq,! together with Egs.3) and (4) (with oy
—wq) completely determines the equilibrium shape of the
The ordering operator with respectdpT is defined by the filament, in the absence of thermal fluctuations. Neglecting
second equality in the above equation, where we broke thexcluded-volume effects and other nonelastic interactions, it
interval s—s’ into n parts of lengthAs each, so thas;  can be showr{23] that the elastic energy associated with
=s' ands,=s. The origin of the difficulty in calculating the some actual configuraticfw,} of the filament is a quadratic
above expression is that the matri€®és) and€Q(s’) donot  form in the deviationSwy= wy— wgk
commute fors#s’ [this is related to the non-Abelian char-
acter of the rotation group in three dimensid8®)].

Equation(3) is equivalent to a set of generalized Frenet
equations from which one can calculate the spatial configu-
ration of the filament, given a set of generalized torsionswvhereT is the temperature is the Boltzmann constant, and
{w}, a; are bare persistence lengths that depend on the elastic

= |lim e @6nAs, . o= sp)Asg—Q(s)As (5)

KT (L
Uog({S,}) = 7JO ds; adw?, (10)
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constants and on the principal moments of inertia with re- _ Sx—(Rik(s,s—As))
spect to the symmetry axes of the cross section, in a model- Aj(s)=lim As . (16)
dependent way. Thus, assuming anisotropic elastigvith As—0*

elastic modulig;) and a particular form of the deformation,
one obtains[23] a;=E4l,/kT, a,=E;l,/kT, and a;
=E,(l,+1,)/KT, wherel; are the principal moments of in-
ertia. In general, the theory of elasticity of incompressible s
isotropic rods with shear modulug. yields [13] a; (R(s,8'))=Ts exp( —f ds”A(s”)). a7
=3ul, /KT, a,=3ul,/kT, andaz=C/kT, where the tor- s’
sional rigidity C is also proportional tax and depends on the
geometry of the cross sectidi24] [for an elliptical cross
section with semiaxeb; andb,, C=7ub3b3/(b2+b3)].
The elastic energW({Sw,}) determines the statistical
weight of the configuratiodw,}. The statistical average of s s
any functional of the configuratioB({w}) is defined as the Tsj dsif ds,€2(sp)(sy)
functional integral stAs  JsoAs

Analogously to Eq(5), the formal solution of Eq(15) can
be written as an ordered exponential,

In order to calculate the matriX we expand the exponential
in Eq. (5) to second order ids=s—s’ and use the property
of the ordering operator

S Sl
D{Swi}B({w})e Verloor/kT = LAsdsl f mdSZQ(Sl)Q(SZ)
(B{{owh))= . (1) i
JD{gwk}e*Uel{ﬁwk}/kT +f dszﬂ(sz)ﬂ(sl)}. (18
S1
Calculating the corresponding Gaussian path integrals Wg, order to average this equation, we first calculate the aver-
obtain age of the producf)(s;)€(s,), using Eqs(4) and(12)
(80i(9))=0.  (Swi(s)dwy(s))=a; '8y 6<s—s’)'(1z> (Q(5)9Q(52)) = ()X QUs2)) +M (51 -57), (19)

whereM is a diagonal matrix with elements
We conclude that fluctuations of generalized torsions at two

different points along the filament contour are uncorrelated, 1 1
and that the amplitude of fluctuations is inversely propor- YiT o 55 T 24 (20
tional to the corresponding bare persistence length. K K !

The statistical properties of fluctuating filaments are de-Using Egs. (18) and (19), and keeping terms up to
termined by the orientational correlation functions, whichflrst order in As [upon integration, the contribution of
can be expressed as averages of the elements of the rotaugﬁ(s ))(Q(S,)) is of order ()2, yields
matrix, L 2 y

((S1(s) =(Ry(8:5)) =3 (Ri(s,8")Ry($".5) A=%0ic+ 2% e 2D

(13 The elements of the averaged rotation matrix are simply
the correlators of the triad vectofsee Eq.(13)]. From the
knowledge of the above correlators one can calculate other
statistical properties of fluctuating filaments, the most famil-
iar of which is the persistence lengtp, that can be inter-
preted as an effective statistical segment length of a coarse-
grained model, in which one replaces the filament by a
random walk with the same contour lendthand rms end-
to-end separatiofr):

The last equality was written using E@2), with s>gs”
>s’. Inspection of Eqs(5) and (4), shows thatR(s,s")
depends only on the torsions,(s;) with s>s;>s", and
that R(s",s’) depends only onw,(s,) with s">s,>s'.
Since fluctuations of the torsion in two nonoverlapping inter-
vals are uncorrelatejdee Eq(12)], the average of the prod-
uct of rotation matrices splits into the product of their aver-
ages:

<Rn(s,s’)>=§ (Ri(s,8"))(Ryj(s",8")). (19 = lim —<r2>

L—>oo

In order to derive a differential equation for the averagedThe end-to-end vector is defined s [ts(s)ds and thus
rotation matrix, we consider the limfs=s—s"—0. Keep-

ing terms to first order il\s we find —im = j dsf ds'(ts(9)ta(s)). (22
L—o
(9<Rij(5,5’)> _

o —2 Aw®(RG(s,s)), (19

The above equations describe the fluctuations of filaments of
arbitrary shape and elastic properties, and in the following
where the matrixA is defined as section this general formalism is applied to helical flaments.
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I1l. FLUCTUATING HELICES K w— y2/3 y Y=\
, _ , , N==—2———+ =, \g= , (30)
A. Untwisted helix: Correlation functions 6 K 3 2
and persistence length )
Consider a helical filament without spontaneous twist, w:\/§(5+’u_7/3), K=12Y349(v—v,)+ 3473,
such that the generalized spontaneous torsjeng} are in- 12 K

dependent of positiols along the contour. In order to de- (31)
scribe the stress-free configuration of such a filament, it i$; is shown in Appendix A that the diagonal orientational
convenient to introduce the conventional Frenet triad, which. o jation functions take the form

consists of the tangent, normal and binormal to the space

curve spanned by the centerline, supplemented by a constant (ti(spti(sp))=(1—c;—c¥)e *s
angle of twistag, which describes the orientation of the . _
cross section in the plane normal to the centerline. According +(cie S+ crel)e e, (32

to the general relation between the two frames, @Y. wg; o

= Ko COSap, W= Ko SiNag and wys= 75, Wherex, and 7, Whergs= 31—52?0. The complex coefficients; are calcu-
are the constant curvature and torsion of the space curve |ated in Appendix A. _

terms of which the total spontaneous curvature that defines In the limit of small fluctuationsy<w,, we have

the rate of rotation of the helix about its long axis, is given

by wozz(KS+ T T.he correspopding he_IicaI 2pitch is )\1:2 (1-2¢) i, )\Rzz Civi,

27719/ wy and the radius of the helical turn ig/wy. We ' '

proceed to calculate the orientational correlation functions.

Since A is a constant matrix, Eq(l ields (for s Wo;
o) ai17) yields (for s, 20=1- -2 W?=w2, (33)

. . =[e Als1=2)7..
(ti(stj(sp))=[e" ;. 23 In this limit, it is easy to generalize our results for the diag-

onal correlators and write down expressions for all the ori-

In order to calculate the matrig~ 21752 we first find the . . .
entational correlation functions:

eigenvalues\; of the matrixA, which are determined by the
characteristic polynomial

(ti(sptj(s2)) = wL{ZOje_MS

A= YN2+ uN—v=0, (24) w?
where we introduced the notations W0 Woj
L +| 8;— —5 | cog wgs)e R
y=v1tyatys=a; +a; +az", (29 @o
_ 2 ka . —ApS
m=wgt y1yY2t v2yst 173, (26) _% Sijkw_osm(wos)e R®, (34

_ 2 H 2
v=Ko( 71008 ot yosifag) + 70yat viv2yvs: @D \heres— s;—s,>0. As expected, Eq34) satisfies the con-

ition of orthonormality of triad vectors;(s,)t;(s1) = &;;

E:aeeimgeusosri]ocr)lf this cubic equation depends on the sign OEthis geometric condition must be satisfied for the instanta-
P neous triad vectors, not only on the averadéote that in the

1 2 limit of weak fluctuations the local helical structure is pre-
A=27(v—v)2+4(u—v?13)3, Vi=z YR 2—7y3, s_erved on contour distgnce&_)\gl a_nd the period of rota-
28) tion of the helix about its axis is given by its spontaneous

value, 27w, .

For A<O all the roots\; are real. In this parameter range, ~ YSing Eqs.(25—(28) it can be shown thatl\//\zlhex_k—>0,
fluctuations are strong enough to destroy the helical structur€ total curvature of the helix vanishesas A~ Sincew
on all length scales. In the limit of very strong fluctuations S Positive forA>0 and vanishes foA<0, in a loose sense
when the bare persistence lengths are much smaller than tHePlays the role of an order parameter associated with helical
radii of curvaturey>w,, we havex;—y; and correlation order, and the poinA=0 can be interpreted as the critical

functions become point at which a continuous helix to random coil transition
takes place. However, although the dependence oh the
<ti(51)tj(52)>:e—w(sl—Sz)5ij (290  various parameters exhibits surprisingly rich behavior, the

investigation of the transition region is of limited physical
with s;—s,>0. Equation(29) shows that although angular significance. The change of the helical period fromaigl
correlations remain on length scales smaller than ,1they  to infinity takes place in the “overdamped” regime where
are identical to those of a persistent rod and do not carry anthis period is larger than the persistence lengsls<(y), and
memory of the original helix. local helical structure can no longer be defined in a statisti-
In the caseA>0, there is one real eigenvalug;, and cally significant sense. An approximate but more physically
two complex ones), 3=Ag*iw, where meaningful criterion for the “melting” transition is that a
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helix of period 2rw ™! melts when the persistence length
becomes of the order of this period.

We now return to Eq(22) for the persistence length. Us-
ing the matrix equationf;dsexp(—As)=A"! and taking
the appropriate matrix element we find

_ o+ Y172
p= . .
K§(v1 COSag+ vy Silfag) + (T5+ Y1¥2) ¥a

(39

The above expression diverges in the limit of a rigid helix
v;— 0 in which fluctuations have a negligible effect on the
helix. Nonmonotonic behavior is observed for “platelike”
helices, with large radius to pitch ratiey/79. When no
thermal fluctuations are preseny;~0), the effective per-
sistence length approaches zero. Weak thermal fluctuation.
“inflate” the helix by releasing stored lengttby a mecha-
nism similar to the stretching of the Slinky™ toy sprjrand
increase the persistence length. Eventually, in the limit OQ

st[(ing fluctuations, the persistence length vanishes dgain qorginate systerais attached at point on its contour. The points
¥3 ) because of the complete randomization of the filament, ando’ on the rodlike chain are the projections of the posisid
Note that the sensitivity to théconstank angle of twist in- s’  respectively.
creases with radius to pitch ratio.

In the opposite limit of “rodlike” helicesky— 0, the ef-

FIG. 2. Schematic plot of section of a ribbonlike helix. The
elix-fixed coordinate systermnat contour points’ is shown. The
olid line describes the associated “rodlike chain” to which the

fective persistence length approacheg;ldnd therefore de- Cosgo singy O
pends ona; and a, only, and not onr, and az, which Rs(¢o)=| —Singy cos¢p, 0 (37)
describe the twist of the cross section about the centerline. 0 0 1

This agrees with the expectation that since straight inexten-

sible rods do not have stored length, their end-to-end dis-

tance and persistence length are determined by random bengksscribes rotation by angtg,(s) with respect to the; axis.
ing and torsion (writhe) fluctuations only and are The matrix

independent of twist.

cosfy 0 —sind,

From the discussion in the preceding section we expect Ra(~00)= _O ! 0 (38)
that in the presence of weak thermal fluctuations, the fila- sinf, 0  cosby
ment will maintain its helical structure locally and that fluc-
tuations will only affect its large scale conformation by in- , , .
troducing random bending and torsion of the helical axis, adives the rotation by angle- 6, with respect to thee, axis
well as random rotation of the filament about this axis. We(€2= Ral #o(S)]€,), andRs(ap) is a rotation by anglex,
now rederive the expressions for the correlators, @4), about thee; axis [e;=R,(— 6p)e;]. Note that while the
using a different approach that relates our paper to that ddpace-fixede was taken as a conventional right-handed triad,
previous investigatorgl8] and, in the process, leads to im- we chose the helix-fixed as a left-handed triad. Although
portant insights about the nature of the long-wavelength flucthis choice does not affect our previous results, it does affect
tuations that dominate the spectrum of fluctuations in thighe geometric relation between the two coordinate systems
regime. and, for consistency, we replaced the left-hantldny the

Note that in the absence of thermal fluctuatiops=0,  right-handed onet®=(—ty,t,,t3), in Eq. (36).
the triad vectorg; attached to the helix can be expressed in In the presence of weak thermal fluctuations, the axis of
terms of the space-fixed orthonormal tride} of vectors the helix slowly bends and rotates in space, resulting in ro-
&, wheree; is oriented along the long axis of the helix and tation of the triad{e}. Since with each poins on the helix
e, ande, lie in the plane normal to itFig. 2). It is conve- ~We can associate its projection
nient to introduce the Euler angleghq(s)=wgS, 6o
=arctanky/m), and aq in terms of which the relation be-
tween the two frames is given by o =108/ wg (39

tR(s)=Rs(ag)Ra( — o) Rl po(s)]e, (36)

B. Weak fluctuations: The rodlike chain model

on the long axis of the helixsee Fig. 2, the rotation of the
triad {€} as one moves along this axis is given by the gener-
where the rotation matrix alized Frenet equations,



7140
de; de,
do P28~ @3&, o= — w83t w3ey,
(40)
des
E :’m'lez_’m'zel.

The generalized torsionsy;(s), are Gaussian random vari-
ables determined by the conditions

(wi(o)wj(a'))=a; *8;8(a—0a"),
(41)

(wi(0))=0,

where the constants should be determined by the require-
ment that the resulting expressions for the correlattre
averages of the elements of the rotation matdwincide
with these in Eq.(34). A calculation similar to that in the
previous section yields the correlators

(a(o)g(a")=5;exp—ylo=a']), (42
where, analogously to E¢20), we have
— 1 1 43
7 k 2ak 2ai .

Using Egs.(36), the correlators of the original triad} can
be expressed in terms of the correlators of {leg triad.
Comparing the results with E§34), gives

2 w2
Wo; Wo;

27l ) E_ )

i 4 woTg

(44)

where the equalitya; =a, is the consequence of symmetry
under rotation in thed; ,e) plane.
The correlatorg41) can be derived from an effective free

energy that describes the long-wavelength fluctuations of th
helical fllament on length scales larger than the period of the_

helix wg *.

KT — —
Uel'=7% f dofay(wi+ ) +agmi]. (49

This expression coincides with the elastic energy of a rodlike

chain (RLC) introduced by Bouchiat and Mezafd8]. The
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two models becomes important if one considers the com-
bined application of extension and twist: while such a cou-
pling appears trivially in models of stretched helical fila-
ments[23], twist has no effect on the extension in the RLC
model[18], in contradiction with experimental observations
[6]. Our analysis underscores the fact that the RLC model
does not give a complete description of the fluctuating helix.
Rather, it describes long-wavelength fluctuations of the
“phantom” axes{g} which, by themselves, contain no in-
formation about the local helical structure of the filament. In
order to recover this information and construct the correla-
tors of the original heliXt;(s;)t;(s»)), one has to go beyond
the RLC model and reconstruct the local helical geometry
using the relation betweeas and the helix-fixed axe, Egs.
(36).

In deriving the expressions for the correlatorgs)t;(0))
in terms of the correlators of the RLC model, we did not take
into account the possibility of fluctuations of the twist angle
of the cross section of the helix about its centerling,
—a(s)=ap+Aa(s). From the fact that the resulting corr-
elators coincide with the exact expressions, B4), we con-
clude that such fluctuations do not contribute to the correla-
tors. This surprising result follows from the fact that in the
weak fluctuation regime, the statistical properties of the helix
are completely determined by the low-energy part of the
fluctuation spectrum. Such long-wavelength fluctuation
modes(Goldstone modedead to the loss of helical correla-
tions on length scales larger than all the natural length scales
of the helix 6=y !>w,'). These Goldstone modes are
associated with spontaneously broken continuous symme-
tries and correspond to bending { andw,) and twist @)
modes of the RLC. It is important to emphasize that these
modes correspond to different deformations of the centerline
of the helix and not to twist of its cross section about this
centerline. Since the elastic energy, Et)), depends on the
spontaneous angle of twist of the helix about its centerline
ﬁwough the combinationdw, = k COSa— ko COSay and Sw,
= k Sina— kg Sinag, we conclude that the energy is not in-
variant under global rotation of the cross section about the
centerline and that such a rotation is not a continuous sym-
metry of the helix. Therefore, twist fluctuations of the helical
cross section are not Goldstone modes and do not contribute
to the correlators in the weak fluctuation limit.
Another interesting observation is that there is no contri-
bution from compressional modes to the long-wavelength

persistence length; describes the elastic response to bendenergy Eq.(10). This is surprising since the RLC is a

ing and torsion of the effective rodlike filament. The persis-

coarse-grained representation of the helix and the latter may

tence lengtha, controls the elastic response of the RLC to be expected to behave as a compressible object, with accor-
twist about its axis. As a consequence of the fluctuationdionlike compressional modd49]. In order to check this
dissipation theorem, it also determines the amplitude of flucpoint, we write down the spatial position of a pombn the

tuationsA ¢ of the angle¢(a)=w§a/ro+A¢(a), where

helix as

the correlator of the random angle of rotation about the axis

of the RLC is given by

([Ap(a)—Ap(a) P =85 o—o'|. (46)

X(S)=x(0)+ 6X(s), (47)

wherex_(a) describes the curve spanned by the long axis of
the helix and, therefore, defines the spatial position of the

In Eq. (44) chaIcuIated the effective persistence lengthspoint o, Eq. (39), on the RLC contour. The deviatiofx(s)
of this model &;) in terms of the bare parameters of the describes the rotation of the locally helical filament about

underlying helical filament. In Ref18] where the analysis

this axis. Since the original filament is incompressible, it

begins with the RLC model, these corresponding persistencgatisfiesdx/ds=t;. From Eq.(36) we obtain an expression
lengths were introduced by hand. The difference between thi®r t; which, upon substitution into the incompressibility
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condition and averaging over length scalflss;| 1}>s 2ndag (=
>w, ' (much larger than the inverse total curvature of the lp= Jo Efo ds(tz(s)ts(s—s1)). (51
helix but much smaller than the radii of curvature of the

RLC), yields In deriving the above expression we assumed that the limit
L—o is taken and that the total angle of twist is always

large, Lay> 2 (i.e., the product oy remains finite for ar-

bitrarily small a). This assumption will be used in the fol-
lowing analysis.
The fact that the long-wavelength fluctuations of the helix e first consider some limiting cases in which analytical
satisfy the above incompressibility conditions, implies thatresults can be derived. In the limit of vanishing twist rates,
compressional fluctuations do not contr_|bute to th_e Iong-&o_)o, the persistence length is obtained by averaging Eq.
wavelength qorrelators. The origin of this obseryaﬂon be-(35) with respect toag. This yields
comes clear if we recall that the energy of the helix depends
on the spontaneous curvatukg and torsionry and, since Tg+ 73_ V2
compressional modes change the local curvature and torsion, lp=
they ha\_/e agapin the energy spectrum apd_thelr energy does \/[ Kg% +(Tg+ ),2+ _ yg)yg]z_ Kgyg
not vanish even in the long-wavelength limit. We conclude
that similar to twist fluctuations of the helical cross section,where
compressional modes are not Goldstone modes.

The above deliberations have profound consequences for v==(71%72)/2
the elastic response of the filament to long-wavelength per- . . .
turbations, suc% as tensile forces and momgents applgad t% i¥§”th 7 an_d _72 defined in _Eq.(20). .
ends. Using the fluctuation-dissipation theorem, we conclude " the limit of large twist ratesq—c, we can replace
that as long as the deformation of the filament remains smalf'® denominator of Eq35) by its average with respect to
(on scalewg %), these forces and moments do not induce theo- This yields
twist of the cross section of the helix about its centerline, and
that the deformation can be completely described by the in-
compressible RLC model.

d;((f) B
5 =es(0). (48

. (52

(53

2 2
Tot V5

l,= . (54)
p

Ky (T5+72) v3
Finally, wheny, =1y, (a;=a,), the persistence length be-

. _comes independent of twist and can be derived from either of
We proceed to calculate the persistence length of a heliggs. ( 52) and(54), by substitutingy_ =0.

C. Effect of spontaneous twist

whose cross section is twisted by an angjgs) = a,s about We now consider the case of arbitrary twist rates and
the centerline ¢, is a constant rate of twistlt is convenient ~ fluctuation amplitudes. The calculation involves the solution
to rewrite Eq.(22) as of linear differential equations with periodic coefficients and
details are given in Appendix B. We obtain
1L L—s'
L=lim =| ds' | ds{ts(s+s)ts(s')). (49 1
P L 0 0 V3
L—ee lp= (55

1+(E-1) *+(E*-1)" %
Recall that the correlator in the integrand of E4) is sim- )
ply the (3,3) element of the averaged rotation matrix, and isAn analytical expression for the complex functi&( ) is
therefore the solution of Eq15), the coefficients of which given in Appendix B.
are the elements of the matrix(s+s’) defined in Eq(21). In Fig. 3 we present a three-dimensional plot of the per-
The diagonal elements of this matrix are constang,( sistence length given in units of the helical pitdf
while the nondiagonal elements are given by the expressionslwgla-rro, as a function of the dimensionless rate of twist

w=2w, ‘e and of the logarithm of the bare persistence

Aq(S+8")=—Ay(s+s")=7y+ do, lengtha, , for a “platelike” helix with large radius to pitch
ratio xo/7g. Inspection of Fig. 3 shows that in the case of a
Agy(s+8)=—Asa(s+8" )=y sin(dos+ @), circular cross section witla;=a,=1000, the persistence

length becomes independent of twist. With increasing asym-
metry,a;<a,, a maximum appears at vanishing twist rates,

accompanied by two minima at,= *+ wo/2. The geometri-

where all the dependence o8’ is contained ina, A Significance of the locationsag=0*wy/2) of these
= ag(S'). resonances is underscored by the observation that in the limit

The correlator in Eq(49) decays exponentially fast with Of vanishing pitch, a ribbonlike untwistedrf=0) helix de-
s, and thus the upper limit on the integral overcan be generates into a ring. Fary= * wy/2, the cross section of a
extended to infinity. Since the correlator is a periodic func-twisted helix rotates byt 7 with each period, and in the
tion of «g, the integration oves’ can be replaced by that above limit the helix degenerates into a Mas ring. As
over ag and we obtain asymmetry increases®{<a,), each extremum splits into a

Aoy(S+8')=—As(S+8')= ko COL pS+ rg), (50)
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FIG. 5. Three-dimensional plot of the persistence lengths a
FIG. 3. Three-dimensional plot of the persistence lerigths a  function of the dimensionless rate of twistand of the spontaneous
function of the dimensionless rate of twistand of the bare per- curvaturexg, for a helical filament with spontaneous torsiep
sistence lengtta, (logarithmic scalg for a helical filament with =1 (in arbitrary unit$. The bare persistence lengths are=500,
spontaneous curvature,=1, and torsion7,=0.01 (in arbitrary  a,=1, anda;=500.

units). The bare persistence lengths age=1000 anda;=5000. . . .
we present a three-dimensional plot of the persistence length

- . . . as a function of the dimensionless rate of twisand of the
minimum and a maximum and eventually one obta_ms a Olll?nverse radius of curvature,, for helices with radius to
at @p=0, accompanied by two symmetrical peakse@t=  pitch ratios of order unity and large asymmetry of the cross
fiwo/_Z- N?tehthat thelz_ pgrsis:cenhce Ienlg]flh is a Uc:ﬁr_'mon%toni%ection,a1>a2. Note that forkg/7o<1 (rodlike helice,
unction of the amplitude of thermal fluctuatiorise., 0 ; ; ; S
1/a,): it first slowly increases and eventually decreases rap'Ehere 's a single broad maximum af) w9/2. Then, at
idly with decreasinga,. Several two-dimensional plots of xol7o=1, acentral pe"?"‘ appearsag=0. Thfs p(.aak grO_WS
the persistence length as a function of the rate of twist, fofnuch faster than thexo=—wo/2 peak, with increasing
different combinations of the bare persistence lengthsire <o/ 7o. At yet higher values oi/7, another peak appears
shown in Fig. 4. The detailed behavior of the persistencet ay=wy/2 and eventually the amplitudes of the two Mo
length depends sensitively on the choice of the parametersius side peaks become equahd much smaller than the
for example, in the limit of weak fluctuations three maximaamplitude of the'%:o peal in the limit of platelike helices,
are observed in Fig. 4, instead of a maximum accompanieg,/r,>1 (see curve 1 in Fig. 4
by two minima in Fig. 3. In all cases, the locations of the Wwhat is the origin of the Mbius resonances observed in
extrema are determined by geometry only=0, *+ wy/2. Figs. 3—-5? Recall that the calculation of the persistence

In order to demonstrate how the initial choice of the hand4ength of a twisted helix involves the solution of linear dif-
edness of the helix breaks the symmetry between the effecfsrential equations with periodic coefficientggs. (B1) in
of under and over twist on the persistence length, in Fig. SAppendix B|. These equations were derived from linear dif-

ferential equations with periodic coefficients and multiplica-

tive random noise, Eq$3) and Eqs(6), which are known to
2 lead to stochastic resonandeXb]. Some physical intuition
can be derived from the following argument. While the per-
sistence length is a property of the space curve described by
the Frenet triad, the microscopic Brownian motion of the
filament arises as the result of random forces that act on its
cross section and therefore are given in the frame associated
with the principal axes of the filament. Since the two frames
are related by a rotation of the cross section by an angle
ap(s), the random force in the Frenet frame is modulated by
2 linear combinations of siag(s) and cosyy(s). This gives a
J 1 deterministic contribution to the persistence length which, to
7 lowest order in the force, is proportional to the mean-square
— — amplitude of the random force and therefore varies sinusoi-
14 -12 -1 08 -06 04 02 0 02 04 06 wo.s 1 12 14 dally with =2aq(s). The Mdoius resonances occur when-

ever the total curvature of the helig, coincides with the

FIG. 4. Plot of the persistence length as a function of the rate of variation of this deterministic contribution of the ran-
dimensionless rate of twist for a helical filament with spontane- dom force .+ 2('10_

ous curvaturexp=1 and torsionry=0.01 (in arbitrary unit3. The

4
0.04 -0.02 0 0.02 004

A

4

different curves correspond to different bare persistence lendths: IV. DISCUSSION
a1:100, 32233:5000, (2) alzl, a2:a3:100, (3) alZO.l,
a,=az=10, and(4) a;=0.01, a,=a;=10. A magnified view of In this paper we studied the statistical mechanics of ther-

the region of small twist rates is shown in the inset. mally fluctuating elastic filaments with arbitrary spontaneous
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curvature and twist. We constructed the equations for théates to the elasticity of random heteropolymers, with
orientational correlation functions and for the persistencequenched distribution of elastic constants and/or spontaneous
length of such filaments. We would like to stress that ourtorsions[27].

theory describes arbitrarily large deviations of a long fila- A natural application of our theory involves the modeling
ment from its equilibrium shape; the only limitation is that Of mechanical properties and conformational statistics of chi-
fluctuations are small on microscopic length scales, of théal biomolecules such as DNA and RNA. The advantage of
order of the thickness of the filament. Furthermore, since th@ur theory is that it allows us to take into account, in an exact
equilibrium shape and the fluctuations of the filaments ardnanner, the effects of.thermal fluctuations on the persistence
completely described by the set of spontaneous torsion€ngth a}nd pther elastic parameters of the filament. Thus,_the
{we) and its fluctuationd sw,}, respectively, our theory is generalization of the theory to include the effect of tensile

set up in the language of intrinsic geometry of the Spacéorcest ‘zn? 'iorqdu;es applledd_tot_ the fends O:] th_e f;latrnetn;[],_ IS
curves. All the interesting statistical information is contained®*XPECted 10 [ead to neéw predictions for mechanical stretching

in the correlators of the triad vectof$} which can be ex- experiments in the intermediate deformation regime, for ten-

pressed in terms of the known correlators of the ﬂuctuation§'le forces that affect the global but not the logah length

[Sw,), using the Frenet equations. Since these equations d cales<l|,) conformation of the filament. Measurements of

scribe pure rotation of the triad vectors, this has the advan:'® effect of .elor_wgauon on thermal_ﬂuctuat]ons of the mol-
cule, can give information about its elastic constants, and

tage that fluctuations of the torsions introduce only rando . X .
elp resolve long-standing questions regarding the natural

rotations of the vectors of the triad, and preserve their uni t f DNA[28 29, It is int ting t

norm. The use of intrinsic geometry automatically ensuregrvaiure Of th 28, qt IS Im ertf]stlnt% ? ‘;"Tmfarg ?ur

that the inextensibility constraint is not violated in the pro- expression for In€ persistence iengtn to that of 1rioaba.
38] who proposed that the apparent persistence lelngtt

cess of thermal fluctuations and therefore does not even ha\%NA d q t onl the riidit . ist
to be considered explicitly in our approach. We would like to epends not only on the rigiditidynamic persistence

remind the readers that the formidable mathematical difficul-lengthld)’ k?”t also an the intrinsic curvature of the molecule
ties associated with attempts to introduce this constrain{Static persistence lengtf). The apparent persistence length

have hindered the development of persistent chain type mod 9iven in terms of the two others as
els in the past and led to the introduction of the mean spheri-

cal approximation in which the constraint is enforced only on 1 11

. ; : —=—t—, (56)
the average, and to perturbative expansions about the straight I, lq g
rod limit.

The general formalism was then applied to helical fila-Note that the philosophy of the above approach is very simi-
ments both with and without twist of the cross section aboufsr to ours — we begin with filaments which have some

fluctuations are dominated by long-wavelength Goldstongoysjon), and find that the interplay between this length and
modes that correspond to bending and twist of the coarsghermal fluctuations gives rise to a persistence lemgthin
grained filamentthe rodlike chain Such fluctuations distort - fact, taking for simplicity the case of a circular cross section,

the helix on length scales much larger than its natural period, — 5, our expression E(35), can be recast into the form
but do not affect its local structure and, in particular, do notof gq. (56), with

change the angle of twist of the cross section about the cen-
terline. Strong thermal fluctuations lead to melting of the |
helix, accompanied by complete loss of local helical struc- a
ture. Depending on the parameters of the helix, the persis- ] ) .
tence length is a nonmonotonic function of the strength ofndeed, in our modela, is the bare persistence length that
thermal fluctuations, and may first increase and then decreaéigtermines the length scale on which the filament is de-
as the amplitude of fluctuations is increased. Resonant peakdrmed by thermal bending and torsion fluctuations. Our ana-
and dips in plots of the persistence length versus the spont#2d of the static persistence lengthdepends on the sponta-
neous rate of twist are observed both for small twist rates ang€ous bending rate, and diverges in the case of a straight
for rates equal to half the total curvature of the helix, phefilament (ko—0), in which casel,—I4. If we make the
nomena which bear some formal similarity to stochasticfurther assumption that twist rigidity is much smaller than
resonances. the bending rigidity,az<a;, the static persistence length
There are several possible directions in which the preserflecomes independent of the bending rigidity and depends on
paper can be extended. We did not consider here the effeck9th the spontaneous curvature and the twist rigidity. Note,
of excluded volume and other nonelastic interactions, on thBowever, that the resulting, > dependence of differs
statistical properties of fluctuating filaments. Such an analyfrom the originally proposed onecgl) [28].
sis requires the introduction of a field theoretical description Another possible application of our theory involves a new
of the filamentg§26]. While this approach is interesting in its way of looking into the protein folding problem. Usually,
own right, we expect that the excluded volume exponent foone assumes that the folded conformation of proteins is de-
the scaling of the end-to-end distance of a single filamentermined by the interactions between the constituent amino
will be identical to that of a Gaussian polymer chaself- acids. A different approach, more closely related to the
avoiding random walk However, new effects related to present paper, would be to reverse the common logic: instead
liquid-crystalline ordering are expected in dense phases aff trying to understand what kind of spatial structure will
such filaments. Another possible extension of the model reresult for a given primary sequence of amino acids, one can

=lp, lg=a, Is:K62(71+T(2)/71)- (57)
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begin with a known equilibrium shap@ative statpand at-
tempt to identify the parameters of an effective filamlis-

tributions of spontaneous torsiof®g;(s)}) which will give
rise to this three-dimensional structuf80]. Knowledge _

Since we are interested only in the diagonal elements of
this matrix, it is convenient to introduce the notations

3
z Ci:]-'
=

about the fluctuations and the melting of proteins can then be ci=vi}, (A4)
used to determine the distribution of the bare persistence
lengths{a;(s)}. Note that usingR;;(s,s") =ti(s)tj(s'), and |4 addition, substituting=0 in Eq. (A3) we get
Egs.(16) and(21), yields
uu=1—cj—c*. (A5)

1
lim Ak (ti(s)te(s—As))].

Vit D Eiwor=
! As—0"

In order to find the complex coefficients we write down
expressions for diagonal elements of the matriesnd A2

The diagonal elements of the correlatol(s)t,(s—As)) de-
termine the{y,} coefficients(and, consequently, the bare
persistence length§a;}), the nondiagonal elements deter-
mine the sef{ w;(s)}. We conclude that measurements of
local correlations between the directions of the principal axes
of symmetry of a fluctuating filament can, in principle, pro-
vide complete information about its equilibrium shape andLooking for the solution of these equations in the foom
elastic properties. While the question of whether such an_ Rec,+ilmc; we get expressions for real and imagilnary
approach can be successfully implemented in order to deteE}-arts (')f compllex parametecs

mine the relation between primary sequence and ternar

structure remains open, our insights about the statistical
properties of fluctuating filaments are clearly applicable to
modeling ofa helices and other elemen(s.g., 8 sheets of
secondary structure of proteins.

¥Yi=(1—ci—cf )N +ci(Agtiw)+cf (N\r—iw),
(7i—\1)?— w3+ w3 =(1—c¢;— cF N2+ ci(Agt+iw)?

+CF(A\g—iw)? (AB)

— ¥2+2e{(A 1+ R) + 2 gA 1 + 02— w3,
w?+ (N1 —\g)?

’

2 Rec;=

2wImci=N;—y;+2(Ag—\1)Rec;. (A7)
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dg
G Ailstsa 688 =(t(s+(s)

ds
(B1)

APPENDIX A: CALCULATION OF CORRELATION
FUNCTIONS

We begin with the construction of the eigenvectors of the
matrix A, defined by Eq.(21), in the caseA>0 [see Eq. with initial conditionsg;(0,s')=g,(0,s')=0 andgs(0s’)
(28)], when there is one real eigenvalugand two complex =1, The matrixA(s+s’) was defined in Eq50). Note that
ones,\g*iw. Expanding this matrix over its eigenvectors, since the onlys-dependent parameter of the helix is the angle
we get of twist, the correlatorg;(s,s’) depend ors’ only through
the parametery(s') =« and, in order to simplify the no-
tation, we will omit the second argument of these functions
in the following.

It is convenient to introduce the complex function

Aij=MUuj+ (\g+iw)owF +(\g—iw)vfv;, (AL)

where the eigenvectons, u, v, v (and the complex conju-
gates of the latter twoy* andv*) obey the orthonormality

o tions f(8)=[01(5) +ig,(s)Je (0" 0 (B2)
3 3 3 3 3 such thatf andg; obey the coupled equations
D uu=2 v =1 2 upi=2, viui= 2] vip;=0 df .
i=1 i=1 i=1 i=1 i=1 4 f+ f*e_Zi(a05+a0)=—i +iraf
(A2) ds Y+IT Y- KoJ3T 17T,
Using these conditions we can exponentiate the matrix dgs 1
oo T 7e9s= ~iro5 (F=17). (B3)

[efAS]ij :Uiujef)\ls_kv_iv}k e*()\RJriw)S_'_v_ikvjef()\Rfiw)S.
(A3)

Taking a Laplace transform of these equations,
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F(p)= f;us)e-“ds, Fs(p)= J:%(s)e-“ds,
(B4)

wherep is, in general, a complex parameter, we get

(p+ s —i70)T(p) +ik93(p)=—y_e 2%f* (p+2iay),
(BS5)

- 1. ~
(p+73)93(p)+iKoi[f(P)_f*(p)]:l- (B6)

In deriving these equations, we used the initial conditions,

f(0)=0 andg,(0)=1. Substitutingg; from Eq. (B6) into

Eq. (B5), we get a closed equation for the complex function

f:
2 2
. Ko |~ . Ko~
(p+ vy —iTo)(p+ 73)"’7 f(p)+irg— 7f*(p)

+y_(p+ys)e 2 (p+2iay)=0. (B7)

Note that the persistence length is determinedygi0),

which can be expressed throuff0)—T* (0), Eq.(B6). The
latter functions can be calculated from EB7), which upon

substitutingp= — 2ind0 (n integey, is recast in the standard
form of difference equations,

anKo?(_Zind0)+2i - Ko?*(_Zindo)+2y_bn

X e~ 2ef*[ - 2i(n—1)ay]=0, (B8)
where we defined
an=1+2[y.—i(70+2nag)](y3—2inag)/ k3,
bn=(y3—2inag)/ ko. (B9)

Since the persistence length is defined as the average

03(0) with respect toay, it is convenient to introduce di-
mensionless functions,, as

2
hn:KOf
0

We multiply Eq. (B8) by exp(2nag) and average it with
respect toay. Defining the parametes=2vy_/ky we re-
write Eq. (B8) in the form

Wdafo

— Y 2inagf/ _9in .
27_re of(—=2inag). (B10)

ayh,+2i8,0—h* +eb,hi_,=0 (B11)

in which bothh, and h*, enter. In order to derive closed

equations for the set gh,} only, we apply complex conju-

gation to the above equation and change —n. This yields
a.* htn_2| 5no_ hn+8bnhn+1:0.

—n

(B12)

Substituting the equations for* , andhy_, into Eq.( B11)
we find
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(ap—1/a* ,—e2bpb,_q/af_ ) h,+2i(1—1/a* ) 6no
+ 2| 85n1bn/a;ﬁ_n+8hn+1bn/atn

+eh,_qb,/ar_,=0. (B13)

Let us first consider the case+0,1. Introducing new
variablesy,, by the equalityh,, . ;=¢gy,h, we find

a,—1/a* . —eb,b,_,/af_ +e%y,b,/a*,

+y, 4b,/a%_,=0. (B14)

We now define

A,=(a,—1/a* )aj_,/b,—e%b,_,, B,=aj_,a*,

(B15)

and get the following recurrence relation, valid for
=23,

An+1l,_1+&%Bpy,=0. (B16)

We now taken=2 in the above equation, and solve fgin
terms of y,. Repeating this proceduréexpressingy, in
terms ofys, etc) we can write the solution as a continued
fraction

y1=— 1A~ e?B,/[Ag—&®B3/(Ay— - - )1}

(B17)

Now consider the case=1 in Eq.(B13). Using the defi-
nitions of A; and B;, Eg. (B15), it can be recast into the
form

(A;+€?By;)h;+2ie+ehy=0. (B18)

In order to obtain a closed equation fog, we return to Eq.
(B12) with n=0,

gfliminating h, from the above two equations we find

ho=—2i+Zh?, (B20)

where, using Eq(B17), E can be represented as a continued
fraction:

E=aj/[1+&%bo/(A1+&°B1yy)] (B21)

=a}/(1+&2bg/{A;—&?B1/[A,—e?By/(Az—---)]}).
(B22)
The solution of Eq(B20) is

(B23)

Recall thath, was defined as the integral ovey, of the
function (0) [Eq. (B10)] which, in turn, determines the
Laplace transform gp=0 of the correlatoﬁg, that appears

in the definition of the persistence length, E§1). Collect-
ing the above expressions we find
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,y—l
= S . (B24)
1+(E-1) *+(E*-1)*

|—f2wda°“ 0= 1111t ho—p
P~ |, E%( )—7—3 —lz( o—hg)
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